Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Sci Rep ; 13(1): 9038, 2023 06 03.
Article in English | MEDLINE | ID: covidwho-20235861

ABSTRACT

Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , SARS-CoV-2/genetics , COVID-19 Vaccines , Oligonucleotides/genetics , COVID-19/prevention & control , mRNA Vaccines , Peptide Mapping/methods , RNA, Messenger/genetics
2.
Anal Methods ; 15(22): 2729-2735, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-2323856

ABSTRACT

The coronavirus disease (COVID-19) pandemic shows the rapid pace at which vaccine development can occur which highlights the need for more fast and efficient analytical methodologies to track and characterize candidate vaccines during manufacturing and purification processes. The candidate vaccine in this work comprises plant-derived Norovirus-like particles (NVLPs) which are structures that mimic the virus but lack any infectious genetic material. Presented here is a liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology for the quantification of viral protein VP1, the main component of the NVLPs in this study. It combines isotope dilution mass spectrometry (IDMS) with multiple reaction monitoring (MRM) to quantify targeted peptides in process intermediates. Multiple MRM transitions (precursor/product ion pairs) for VP1 peptides were tested with varying MS source conditions and collision energies. Final parameter selection for quantification includes three peptides with two MRM transitions each offering maximum detection sensitivity under optimized MS conditions. For quantification, a known concentration of the isotopically labeled version of the peptides to be quantified was added into working standard solutions to serve as an internal standard (IS); calibration curves were generated for concentration of native peptide vs. the peak area ratio of native-to-isotope labeled peptide. VP1 peptides in samples were quantified with labeled versions of the peptides added at the same level as that of the standards. Peptides were quantified with limit of detection (LOD) as low as 1.0 fmol µL-1 and limit of quantitation (LOQ) as low as 2.5 fmol µL-1. NVLP preparations spiked with known quantities of either native peptides or drug substance (DS) comprising assembled NVLPs produced recoveries indicative of minimal matrix effects. Overall, we report a fast, specific, selective, and sensitive LC-MS/MS strategy to track NVLPs through the purification steps of the DS of a Norovirus candidate vaccine. To the best of our knowledge, this is the first application of an IDMS method to track virus-like particles (VLPs) produced in plants as well as measurements performed with VP1, a Norovirus capsid protein.


Subject(s)
COVID-19 , Norovirus , Vaccines , Humans , Chromatography, Liquid/methods , Capsid Proteins , Tandem Mass Spectrometry/methods , Peptides , Isotopes , Vaccines/analysis
3.
Metabolomics ; 18(1): 6, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-2310631

ABSTRACT

INTRODUCTION: The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. Properties of the host response are not measured but are key in determining outcome. Although metabolic profiles are well suited to capture host state, most metabolomics studies are either underpowered, measure only a restricted subset of metabolites, compare infected individuals against uninfected control cohorts that are not suitably matched, or do not provide a compact predictive model. OBJECTIVES: Here we provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples acquired at hospital admission. The study aims to predict the patient's infection severity (i.e., mild or severe) and potential outcome (i.e., discharged or deceased). METHODS: High resolution untargeted UHPLC-MS/MS analysis was performed on patient serum using both positive and negative ionization modes. A subset of 20 intermediary metabolites predictive of severity or outcome were selected based on univariate statistical significance and a multiple predictor Bayesian logistic regression model was created. RESULTS: The predictors were selected for their relevant biological function and include deoxycytidine and ureidopropionate (indirectly reflecting viral load), kynurenine (reflecting host inflammatory response), and multiple short chain acylcarnitines (energy metabolism) among others. Currently, this approach predicts outcome and severity with a Monte Carlo cross validated area under the ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. A blind validation study on an additional 90 patients predicted outcome and severity at ROC AUC of 0.83 (CI 0.74-0.91) and 0.76 (CI 0.67-0.86). CONCLUSION: Prognostic tests based on the markers discussed in this paper could allow improvement in the planning of COVID-19 patient treatment.


Subject(s)
COVID-19/blood , Chromatography, Liquid/methods , Metabolomics/methods , Tandem Mass Spectrometry/methods , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2 , Severity of Illness Index
4.
J Pharm Biomed Anal ; 233: 115436, 2023 Sep 05.
Article in English | MEDLINE | ID: covidwho-2307829

ABSTRACT

Favipiravir (FVP) is a broad-spectrum antiviral that selectively inhibits viral RNA-dependent RNA polymerase, first trialled for the treatment of influenza infection. It has been shown to be effective against a number of RNA virus families including arenaviruses, flaviviruses and enteroviruses. Most recently, FVP has been investigated as a potential therapeutic for severe acute respiratory syndrome coronavirus 2 infection. A liquid chromatography tandem mass spectrometry method for the quantification of FVP in human plasma has been developed and validated for use in clinical trials investigating favipiravir as treatment for coronavirus disease-2019. Samples were extracted by protein precipitation using acetonitrile, using 13C, 15N- Favipiravir as internal standard. Elution was performed on a Synergi Polar-RP 150 × 2.1 mm 4 µm column using a gradient mobile phase programme consisting of 0.2% formic acid in water and 0.2% formic acid in methanol. The assay was validated over the range 500-50,000 ng/mL; this method was found to be precise and accurate and recovery of FVP from the matrix was high. Stability experiments confirmed and expanded on the known stability of FVP, including under heat treatment and for a period of 10 months at - 80 °C.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
5.
J Pharm Biomed Anal ; 228: 115340, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2288912

ABSTRACT

VV116 is an oral nucleoside anti-COVID-19 drug undergoing clinical trials in China. We aimed to characterize its metabolites in plasma, urine, and feces of healthy Chinese male subjects after a single oral administration of 400 mg VV116, by using UHPLC-UV-Orbitrap-MS. After oral administration, VV116 was almost completely converted into the metabolite 116-N1. Seventeen other metabolites produced by the subsequent metabolism of 116-N1 were also detected, including 6 phase I metabolites and 11 phase II metabolites resulting from hydrolysis, oxidative deamination, oxidation, and CN-group removal and conjugations. The results were exploratory. The major metabolite of VV116 in human plasma and urine was 116-N1, the main metabolites in feces were M2 and 116-N1. We then synthesized a reference M2 standard and confirmed its structure by MS and NMR.


Subject(s)
Nucleosides , Tandem Mass Spectrometry , Humans , Male , Pharmaceutical Preparations , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Administration, Oral
6.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2254813

ABSTRACT

Vitamin D plays a critical role in bone development and maintenance, and in other physiological functions. The quantitation of endogenous levels of individual vitamin D and its metabolites is crucial for assessing several disease state conditions. With cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leading to the coronavirus disease 2019 (COVID-19) pandemic, there are several studies that have associated lower levels of serum vitamin D with severity of infection in COVID-19 patients. In this context, we have developed and validated a robust LC-MS/MS method for simultaneous quantitation of vitamin D and its metabolites in human dried blood spot (DBS) obtained from participants tested for COVID-19. The chromatographic separation for vitamin D and metabolites was performed using an ACE Excel C18 PFP column protected with a C18 guard column (Phenomenex, Torrance, CA, USA). The mobile phase consisted of formic acid in water (0.1% v/v) as mobile phase A and formic acid in methanol (0.1% v/v) as mobile phase B, operated at a flow rate of 0.5 mL/min. Analysis was performed utilizing the LC-MS/MS technique. The method was sensitive with a limit of quantification of 0.78 ng/mL for all analytes, and had a large dynamic range (200 ng/mL) with a total run time of 11 min. The inter- and intraday accuracy and precision values met the acceptance criteria per the US Food and Drug Administration guidelines. Blood concentrations of 25(OH)D3, vitamin D3, 25(OH)D2, and vitamin D2 over a range of 2-195.6, 0.5-121.5, 0.6-54.9, and 0.5-23.9 ng/mL, respectively, were quantified in 909 DBS samples. In summary, our developed LC-MS/MS method may be used for quantification of vitamin D and its metabolites in DBS, and may be applied to investigations of the emerging role of these compounds in various physiological processes.


Subject(s)
COVID-19 , Vitamin D , Humans , Chromatography, Liquid/methods , SARS-CoV-2 , Tandem Mass Spectrometry/methods , Vitamins , Biomarkers , Reproducibility of Results
7.
Sci Rep ; 13(1): 2534, 2023 02 13.
Article in English | MEDLINE | ID: covidwho-2245374

ABSTRACT

Andrographis paniculata, a medicinal plant in Thailand national list of essential medicines, has been proposed for treatment of patients with mild to moderate coronavirus disease 2019. This study aims to develop a highly selective and sensitive liquid chromatography triple quadrupole tandem mass spectrometry method for quantitative determination of major diterpenoids in plasma and urine with application in pharmacokinetics. Chromatographic separation was performed on C18 column using a gradient mobile phase of water and acetonitrile. Mass spectrometry was analyzed using multiple reaction monitoring with negative ionization mode. This validated analytical method was very sensitive, less time consuming in analysis, and allowed the reliability and reproducibility on its application. The clinical pharmacokinetics was evaluated after single oral administration of A. paniculata extract (calculated as 60 mg of andrographolide). The disposition kinetics demonstrated that major diterpenoids could enter into systemic circulation, but they are mostly biotransformed (phase II) into conjugated glucuronide and sulfate metabolites. These metabolites are predominantly found in plasma and then extremely eliminated, in part through urinary excretion. The successful application of this analytical method supports its suitable uses in further clinical benefits after oral administration of A. paniculata.


Subject(s)
Andrographis , COVID-19 , Diterpenes , Humans , Chromatography, Liquid/methods , Reproducibility of Results , Tandem Mass Spectrometry/methods , Diterpenes/chemistry , Administration, Oral , Metabolic Networks and Pathways , Chromatography, High Pressure Liquid/methods , Andrographis/chemistry
8.
J Proteome Res ; 22(4): 1138-1147, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2244872

ABSTRACT

Targeted quantification of proteins is a standard methodology with broad utility, but targeted quantification of glycoproteins has not reached its full potential. The lack of optimized workflows and isotopically labeled standards limits the acceptance of glycoproteomics quantification. In this work, we introduce an efficient and streamlined chemoenzymatic synthesis of a library of isotopically labeled glycopeptides of IgG1 which we use for quantification in an energy optimized LC-MS/MS-PRM workflow. Incorporation of the stable isotope labeled N-acetylglucosamine enables an efficient monitoring of all major fragment ions of the glycopeptides generated under the soft higher-energy C-trap dissociation (HCD) conditions, which reduces the coefficients of variability (CVs) of the quantification to 0.7-2.8%. Our results document, for the first time, that the workflow using a combination of stable isotope labeled standards with intrascan normalization enables quantification of the glycopeptides by an electron transfer dissociation (ETD) workflow, as well as the HCD workflow, with the highest sensitivity compared to traditional workflows. This was exemplified by a rapid quantification (13 min) of IgG1 Fc glycoforms from COVID-19 patients.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , Tandem Mass Spectrometry/methods , Glycopeptides , Chromatography, Liquid/methods
9.
Molecules ; 28(1)2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2242985

ABSTRACT

A novel COVID-19 vaccine (BriLife®) has been developed by the Israel Institute for Biological Research (IIBR) to prevent the spread of the SARS-CoV-2 virus throughout the population in Israel. One of the components in the vaccine formulation is tris(hydroxymethyl)aminomethane (tromethamine, TRIS), a buffering agent. TRIS is a commonly used excipient in various approved parenteral medicinal products, including the mRNA COVID-19 vaccines produced by Pfizer/BioNtech and Moderna. TRIS is a hydrophilic basic compound that does not contain any chromophores/fluorophores and hence cannot be retained and detected by reverse-phase liquid chromatography (RPLC)-ultraviolet (UV)/fluorescence methods. Among the few extant methods for TRIS determination, all exhibit a lack of selectivity and/or sensitivity and require laborious sample treatment. In this study, LC−mass spectrometry (MS) with its inherent selectivity and sensitivity in the multiple reaction monitoring (MRM) mode was utilized, for the first time, as an alternative method for TRIS quantitation. Extensive validation of the developed method demonstrated suitable specificity, linearity, precision, accuracy and robustness over the investigated concentration range (1.2−4.8 mg/mL). Specifically, the R2 of the standard curve was >0.999, the recovery was >92%, and the coefficient of variance (%CV) was <12% and <6% for repeatability and intermediate precision, respectively. Moreover, the method was validated in accordance with strict Good Manufacturing Practice (GMP) guidelines. The developed method provides valuable tools that pharmaceutical companies can use for TRIS quantitation in vaccines and other pharmaceutical products.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Tromethamine/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drug Compounding , COVID-19/prevention & control , SARS-CoV-2 , Chromatography, Liquid
10.
Int J Environ Res Public Health ; 20(2)2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2227868

ABSTRACT

Whilst the impact of coronavirus disease 2019 (COVID-19) on the host proteome, metabolome, and lipidome has been largely investigated in different bio-fluids, to date, the circulating peptidome remains unexplored. Thus, the present study aimed to apply an untargeted peptidomic approach to provide insight into alterations of circulating peptides in the development and severity of SARS-CoV-2 infection. The circulating peptidome from COVID-19 severe and mildly symptomatic patients and negative controls was characterized using LC-MS/MS analysis for identification and quantification purposes. Database search and statistical analysis allowed a complete characterization of the plasma peptidome and the detection of the most significant modulated peptides that were impacted by the infection. Our results highlighted not only that peptide abundance inversely correlates with disease severity, but also the involvement of biomolecules belonging to inflammatory, immune-response, and coagulation proteins/processes. Moreover, our data suggested a possible involvement of changes in protein degradation patterns. In the present research, for the first time, the untargeted peptidomic approach enabled the identification of circulating peptides potentially playing a crucial role in the progression of COVID-19.


Subject(s)
COVID-19 , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Peptides
11.
Eur Rev Med Pharmacol Sci ; 27(2): 818-825, 2023 01.
Article in English | MEDLINE | ID: covidwho-2237093

ABSTRACT

OBJECTIVE: Transplant recipients have a higher risk of SARS-CoV-2 infection owing to the use of immunosuppressive drugs like tacrolimus (FK506). FK506 and nirmatrelvir (NMV) (an anti-SARS-CoV-2 drug) are metabolized by cytochrome P450 3A4 and may have potential drug-drug interactions. It is important to determine the effect of NMV on FK506 concentrations. PATIENTS AND METHODS: Following protein precipitation from blood, FK506 and its internal standard (FK506-13C,2d4) were detected by ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). Total 22 blood samples (valley concentrations) from two coronavirus disease 2019 (COVID-19) patients were collected and analyzed for FK506 concentrations. RESULTS: Blood levels of FK506 (0.5-100 ng/mL) showed good linearity. The UHPLC-MS/MS method was validated with intra- and inter-batch accuracies of 104.55-107.85%, and 99.52-108.01%, respectively, and precisions of < 15%. Mean blood FK506 concentration was 12.01 ng/mL (range, 3.15-33.1 ng/mL). Five-day co-administration with NMV increased the FK506 concentrations from 3.15 ng/mL to 33.1 ng/mL, returning to 3.36 ng/mL after a 9-day-washout. CONCLUSIONS: We developed a simple quantification method for therapeutic drug monitoring of FK506 in patients with COVID-19 using UHPLC-MS/MS with protein precipitation. We found that NMV increased FK506 blood concentration 10-fold. Therefore, it is necessary to re-consider co-administration of FK506 with NMV.


Subject(s)
COVID-19 , Tacrolimus , Humans , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Lactams , Leucine , Reproducibility of Results , Drug Monitoring
12.
Int J Environ Res Public Health ; 20(3)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216014

ABSTRACT

The consumption of alcohol in a population is usually monitored through individual questionnaires, forensics, and toxicological data. However, consumption estimates have some biases, mainly due to the accumulation of alcohol stocks. This study's objective was to assess alcohol consumption in Slovakia during the COVID-19 pandemic-related lockdown using wastewater-based epidemiology (WBE). Samples of municipal wastewater were collected from three Slovak cities during the lockdown and during a successive period with lifted restrictions in 2020. The study included about 14% of the Slovak population. The urinary alcohol biomarker, ethyl sulfate (EtS), was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). EtS concentrations were used to estimate the per capita alcohol consumption in each city. The average alcohol consumption in the selected cities in 2020 ranged between 2.1 and 327 L/day/1000 inhabitants and increased during days with weaker restrictions. WBE can provide timely information on alcohol consumption at the community level, complementing epidemiology-based monitoring techniques (e.g., population surveys and sales statistics).


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Cities , Slovakia/epidemiology , Chromatography, Liquid/methods , Pandemics , Tandem Mass Spectrometry/methods , COVID-19/epidemiology , Communicable Disease Control , Alcohol Drinking/epidemiology , Ethanol/analysis
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1214: 123562, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2159192

ABSTRACT

Benzalkyldimethylammonium (or benzalkonium; BACs), alkyltrimethylammonium (ATMACs), and dialkyldimethylammonium compounds (DDACs) have been widely used for over six decades as disinfectants, especially during the COVID-19 pandemic. Here we describe methods for the determination of 7 BACs, 6 ATMACs, 6 DDACs, 8 BAC metabolites, and the structurally similar quaternary ammonium compound (QAC) herbicides diquat, paraquat, and difenzoquat in human serum and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The methods were optimized using isotopically labelled internal standards and solid-phase extraction with weak cation-exchange cartridges. We separated diquat and paraquat chromatographically using a mixed-mode LC column, and BACs, ATMACs, DDACs, difenzoquat, and BAC metabolites using reversed-phase (C8 and C18) LC columns. Method limits of detection (MLODs) and quantification (MLOQs) were 0.002-0.42 and 0.006-1.40 ng/mL, respectively. Recoveries of all analytes fortified at 1, 5, and 20 ng/mL concentrations in serum and urine matrices were 61-129%, with standard deviations of 0-20%. Repeated analysis of similarly fortified serum and urine samples yielded intra-day and inter-day variations of 0.22-17.4% and 0.35-17.3%, respectively. Matrix effects for analytes spiked into serum and urine matrices ranged from -27% to 15.4%. Analysis of real urine and serum samples revealed the presence of several QACs in human serum. Although no parent BACs were found in urine, we detected, for the first time, several ω-hydroxy and ω-carboxylic acid metabolites of BACs at average concentrations in the range of 0.05-0.35 ng/mL. The developed method is suitable for application in large-scale biomonitoring of human exposure to QACs and their metabolites in human serum and urine.


Subject(s)
COVID-19 , Paraquat , Humans , Paraquat/urine , Chromatography, Liquid/methods , Diquat/urine , Benzalkonium Compounds , Quaternary Ammonium Compounds , Tandem Mass Spectrometry/methods , Pandemics
14.
Front Immunol ; 13: 894170, 2022.
Article in English | MEDLINE | ID: covidwho-2141903

ABSTRACT

The metabolic characteristics of COVID-19 disease are still largely unknown. Here, 44 patients with COVID-19 (31 mild COVID-19 patients and 13 severe COVID-19 patients), 42 healthy controls (HC), and 42 patients with community-acquired pneumonia (CAP), were involved in the study to assess their serum metabolomic profiles. We used widely targeted metabolomics based on an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The differentially expressed metabolites in the plasma of mild and severe COVID-19 patients, CAP patients, and HC subjects were screened, and the main metabolic pathways involved were analyzed. Multiple mature machine learning algorithms confirmed that the metabolites performed excellently in discriminating COVID-19 groups from CAP and HC subjects, with an area under the curve (AUC) of 1. The specific dysregulation of AMP, dGMP, sn-glycero-3-phosphocholine, and carnitine was observed in the severe COVID-19 group. Moreover, random forest analysis suggested that these metabolites could discriminate between severe COVID-19 patients and mild COVID-19 patients, with an AUC of 0.921. This study may broaden our understanding of pathophysiological mechanisms of COVID-19 and may offer an experimental basis for developing novel treatment strategies against it.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Humans , Metabolomics/methods , Tandem Mass Spectrometry/methods
15.
Anal Chem ; 94(43): 14835-14845, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2087110

ABSTRACT

AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months. Instead, we developed a highly sensitive (5 ng/mL limit of quantification) method using a hybrid LBA-liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approach for quantification of the two codosed antibodies in serum and nasal lining fluid (NLF), a rare matrix. The method was optimized by careful selection of multiple reaction monitoring, capture reagents, magnetic beads, chromatographic conditions, evaluations of selectivity, and matrix effect. The final assay used viral spike protein receptor-binding domain as capture reagent and signature proteotypic peptides from the complementarity-determining region of each mAb for detection. In contrast to other methods of similar/superior sensitivity, our approach did not require multidimensional separations and can be operated in an analytical flow regime, ensuring high throughput and robustness required for clinical analysis at scale. The sensitivity of this method significantly exceeds typical sensitivity of ∼100 ng/mL for analytical flow 1D LBA-LC-MS/MS methods for large macromolecules, such as antibodies. Furthermore, infection and vaccination status did not impact method performance, ensuring method robustness and applicability to a broad patient population. This report demonstrated the general applicability of the hybrid LBA-LC-MS/MS approach to platform quantification of antibodies with high sensitivity and reproducibility, with specialized extension to matrices of increasing interest, such as NLF.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Reproducibility of Results , Antibodies, Monoclonal/analysis , Indicators and Reagents , Antibodies, Viral
16.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1212: 123516, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2086382

ABSTRACT

Carmofur is an acid ceramidase inhibitor with superior efficacy in suppressing and killing fatally aggressive glioblastoma cell lines compared to the FDA-approved drug temozolomide. In addition to brain tumors, carmofur also gained attention as a potential lead inhibitor of the main protease (MPRO) of SARS-CoV-2. It is also reported efficacious against numerous other cancers and non-cancerous diseases including acute lung injury, dementia, Parkinson's disease, childhood ependymoma, and Krabbe disease etc. Carmofur also possesses antifungal and antimicrobial properties. Therefore, a sensitive bio-analytical method is needed in order to support further in vivo pharmacological investigation, pre-clinical and clinical studies. Herein, we report a sensitive, and reliable LC-MS/MS method for quantitative bioanalysis of carmofur using mouse plasma. The samples were prepared employing liquid-liquid extraction (LLE) technique using ethyl acetate and 2-propanol (85:15). Chromatographic separation was achieved on an XBridge BEH C18 XP column (100 mm × 3 mm, 2.5 µm) with a runtime of eight minutes. Quantification was performed in multiple reaction monitoring (MRM) mode with precursor to product ion transition of m/z 256.25 â†’ m/z 129.01 for carmofur and m/z 145.53 â†’ m/z 42.00 for 5-chlorouracil (IS) in negative electrospray ionization. Carmofur showed good linearity over the range of 5-1,000 ng.mL-1. The method was validated in terms of specificity, linearity, carry-over, matrix effect, recovery efficiency, accuracy, precision, dilution integrity, and stability. Finally, the method was successfully employed in a pharmacokinetic study in mouse plasma after intraperitoneal administration of the drug solution. To the best of our knowledge, this is the first report of an LC-MS/MS method for carmofur bioanalysis.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Animals , Mice , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Reproducibility of Results
17.
Sci Total Environ ; 857(Pt 2): 159351, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2069672

ABSTRACT

Z-drugs, benzodiazepines and ketamine are classes of psychotropic drugs prescribed for treating anxiety, sleep disorders and depression with known side effects including an elevated risk of addiction and substance misuse. These drugs have a strong potential for misuse, which has escalated over the years and was hypothesized here to have been exacerbated during the COVID-19 pandemic. Wastewater-based epidemiology (WBE) constitutes a fast, easy, and relatively inexpensive approach to epidemiological surveys for understanding the incidence and frequency of uses of these drugs. In this study, we analyzed wastewater (n = 376) from 50 cities across the United States and Mexico from July to October 2020 to estimate drug use rates during a pandemic event. Both time and flow proportional composite and grab samples of untreated municipal wastewater were analyzed using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry to determine loadings of alprazolam, clonazepam, diazepam, ketamine, lorazepam, nordiazepam, temazepam, zolpidem, and zaleplon in raw wastewater. Simultaneously, prescription data of the aforementioned drugs were extracted from the Medicaid database from 2019 to 2021. Results showed high detection frequencies of ketamine (90 %), lorazepam (87 %), clonazepam (76 %) and temazepam (73 %) across both Mexico and United States and comparatively lower detection frequencies for zaleplon (22 %), zolpidem (9 %), nordiazepam (<1 %), diazepam (<1 %), and alprazolam (<1 %) during the pandemic. Average mass consumption rates, estimated using WBE and reported in units of mg/day/1000 persons, ranged between 62 (temazepam) and 1100 (clonazepam) in the United States. Results obtained from the Medicaid database also showed a significant change (p < 0.05) in the prescription volume between the first quarter of 2019 (before the pandemic) and the first quarter of 2021 (pandemic event) for alprazolam, clonazepam and lorazepam. Study results include the first detections of zaleplon and zolpidem in wastewater from North America.


Subject(s)
COVID-19 , Ketamine , Humans , United States/epidemiology , Benzodiazepines , Alprazolam/analysis , Wastewater/analysis , Pandemics , Nordazepam/analysis , Zolpidem/analysis , Clonazepam/analysis , Lorazepam/analysis , Tandem Mass Spectrometry/methods , COVID-19/epidemiology , Temazepam/analysis , Mexico/epidemiology , Diazepam
18.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1212: 123510, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2069270

ABSTRACT

Nirmatrelvir is an antiviral agent active against SARS-CoV-2, the virus causing the pandemic disease COVID-19. It is administrated in combination with the protease inhibitor ritonavir, which acts in case of COVID-19 mainly as enzyme blocking agent preventing the premature metabolic elimination of nirmatrelvir. The combination of the two drugs in separate tablets is marketed under the brand name Paxlovid® and shows good effectivity in preventing the progression of COVID-19 to severe disease state. In this work, we described a LC-MS/MS method for the simultaneous quantification of nirmatrelvir and ritonavir in human plasma of patients treated for COVID-19 with Paxlovid®. After addition of D6-ritonavir as internal standard, plasma proteins were precipitated by the addition of methanol. The analytes were separated by gradient elution on a C18-column and were detected by tandem mass spectrometry. Calibration functions were linear in the ranges of 10 - 10000 ng/mL for nirmatrelvir and 2 - 2000 ng/mL for ritonavir. Inter-day and intra-day precision and accuracy was better than 15 % in the quality control samples and better than 20 % at the LLOQ. The method was successfully applied on samples of hospitalized patients treated for COVID-19 and proved to be capable in supporting therapeutic drug monitoring (TDM).


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Ritonavir , Humans , Chromatography, Liquid/methods , Ritonavir/therapeutic use , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , COVID-19/epidemiology , SARS-CoV-2
19.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2032984

ABSTRACT

Vitamin D is no longer considered an agent only affecting calcium phosphate metabolism. A number of studies over the past few years have demonstrated its role in immunomodulation and its influence on the development and functioning of the brain and nervous system. In the current epidemiological crisis caused by coronavirus disease 2019 (COVID-19), the immunoprotective role of vitamin D has been discussed by some authors regarding whether it contributes to protection against this serious disease or whether its use does not play a role. Non-standard approaches taken by laboratories in examining the serum levels of the vitamin D metabolite calcidiol have contributed to inconsistent results. We examined the serum of 60 volunteers in the spring and autumn of 2021 who declared whether they were taking vitamin D at the time of sampling. Furthermore, the tested participants noted whether they had experienced COVID-19. A newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to measure calcidiol levels. The analysis of variance (ANOVA) model of Statgraphics Centurion 18 statistical software from Statgraphics Technologies was used for calculations. The results of this study showed that those who took vitamin D suffered significantly less often from COVID-19 than those who did not take vitamin D.


Subject(s)
COVID-19 , Vitamin D , COVID-19/epidemiology , COVID-19/prevention & control , Calcifediol , Chromatography, Liquid/methods , Humans , Tandem Mass Spectrometry/methods , Vitamin D/metabolism , Vitamins
20.
Anal Chim Acta ; 1230: 340391, 2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2031062

ABSTRACT

Protein sialylation participates many biological processes in a linkage-specific manner, and aberrant sialylation has been associated with many malignant diseases. Mass spectrometry-based quantitative N-glycoproteomics has been widely adopted for quantitative analysis of aberrant sialylation, yet multiplexing method at intact N-glycopeptides level is still lacking. Here we report our study of sialic acid linkage-specific quantitative N-glycoproteomics using selective alkylamidation and multiplex tandem mass tags (TMT)-labeling. With lung cancer as a model system, differential sialylation in cancer tissues relative to adjacent non-tumor tissues was characterized at the intact N-glycopeptide level with N-glycosite information. TMT-labeled intact N-glycopeptides with and without sialic acid alkylamidation were subject to reversed-phase liquid chromatography-nano-electron spray ionization-tandem mass spectrometry (RPLC-nanoESI-MS/MS) analysis to provide comprehensive characterization of N-glycosylation with and without sialic acid at the intact N-glycopeptide level with structure and N-glycosite. In this study, 6384 intact N-glycopeptides without sialylation were identified and 521 differentially expressed intact N-glycopeptides from 254 intact N-glycoproteins were quantified. Eight intact N-glycoproteins responsible for N-glycan biosynthesis were identified as glycosyltransferases. In total, 307 sialylated intact N-glycopeptides with linkage-specific sialic acid residues were identified together with 29 N-glycans with α2,6-linked sialic acids and 55 N-glycans with α2,3-linked sialic acids. Intact N-glycoproteins with α2,6-sialylation were associated with coronavirus disease-(COVID)-19. Additionally, many types of N-glycosylation including terminal N-galactosylation, core and/or branch fucosylation, α2,6-sialylation and terminal bisecting N-acetylglucosamine were identified and quantified in intact N-glycoproteins from immunoglobulin family.


Subject(s)
COVID-19 , N-Acetylneuraminic Acid , Acetylglucosamine , Glycopeptides/chemistry , Glycoproteins/chemistry , Glycosyltransferases , Humans , Polysaccharides/analysis , Sialic Acids/chemistry , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL